
Billing Rules Functional Design

1. Rules Design Objectives
Guidelines used to aid the design process.

2. Requirement Analysis
An in-depth consideration of the requirement using the design guidelines as
boundary conditions.

3. Design Theory – Rules Modeling
Distill the lessons learned from analyzing the requirement into a model.

4. Architectural Implementation
Equating the rules model to an Idiom solution.

5. A Repeatable Process
A sustainable approach to maintenance and the creation of new rules.

Billing Rules Design Objectives

1. Rules should be adaptable
Rules should be configurable so that it will be possible to change the parameters
of a decision without having to change the underlying rule logic.

2. Flexibility should not be a hindrance
Rule configurations and structure should not be monolithic and should be
maintainable by an easy to use application/interface.

3. Rules should approximate human thinking
The rules structure should be a self defining workflow of simplified steps which
would best approximate an intuitive decisioning pattern to aid troubleshooting and
maintenance by subject matter experts.

4. Units of work should follow a repeatable pattern
Rule sets should conform to a common architecture which forms a rules framework
or a method of resolving requirements.

Requirement Analysis

• The ChargeTable spreadsheet defines the billing rules by category e.g. 1.1 Inpatient
– Deposit, 1.2 Inpatient - Admission fee, 1.3 IP - Maint fee(Patient).

Requirement Analysis

• Each category (tab on spreadsheet) is analogous to a unit of billing work that must
be undertaken for an event which occurs within the timeline of a patient encounter

• Conclusion – a rule set should be created for every category of billing rules.

Requirement Analysis

• Each unit of billing work e.g. 1.2 Inpatient - Admission fee is broken down further
into a set of billing rules which may or may not apply to a patient encounter

Requirement Analysis

• Each billing rule defines a set of conditions under which the billing rule may raise a
charge against the patient encounter

• Each column defines a condition for which the billing charge may be raised e.g. in
order for this billing charge to be raised the patient must belong to patient group EP
AND NOT be of patient type PA AND the admission source must be A&E AND the
type of ward must be a Acute and the Disease must not be one of the following
Tuberculosis, Sexually Transmitted Disease……

• So all conditions must be true for a billing rule in order to raise a charge against the
patient encounter

Requirement Analysis

• Lets take a closer look at the conditions themselves

a) A condition may imply an equals condition to state that a patient value must equate
to a specific value e.g. in this case Patient Group must be EP.

b) A condition may also imply a not equals condition to state that a Patient type may
not be of a certain value e.g. in this case Patient Type must not be PA.

c) A condition may also imply the exclusion/Inclusion of a set of patient values

• Conclusion – conditions for raising a billing charge will have to cater for both
traditional Equals/ Not equals evaluations and Enumeration evaluations where we
have to check if a value falls into an acceptable/unacceptable set.

Requirement Analysis

• Lets go back and have a look at an example billing charge

• A billing rule will have at least 1 condition under which we raise a charge e.g.
• If <Patient Group> AND <Patient Type> AND <IsPublic> AND <Disease>

• All rules for a unit of work have the same type of conditions (with a few exceptions).

• Any business rule that has a large number of conditions is typically difficult to
maintain. In addition sustainability suffers as more conditions are added.

• Conclusion – Each condition could be expressed as a rule within a workflow which
would imply the AND relationship between each step. This would allow us to break
up rules into smaller steps of individual evaluations.

Requirement Analysis

Summary

1. A rule set should be created for every category of billing rules.

2. Conditions for raising a billing charge will have to cater for both traditional Equals/
Not equals evaluations and Enumeration evaluations where we have to check if a
value falls into an acceptable/unacceptable set.

3. Each condition could be expressed as a rule within a workflow which would imply
the AND relationship between each step. This would allow us to break up rules into
smaller steps of individual evaluations.

Design Theory – Rules Modeling

• A rule set should be created for every category of billing rules.
• A category consists of a number of billing rules which must be evaluated for a

patient occurrence/event.
• So a starting flowchart model for a rules category would look something like this :-

Continued over page…

1. For each applicable patient event

2. The conditions for each rule are
evaluated

3. If a rule’s conditions evaluate to
true then a billing charge is raised

• This model assumes a simplistic
design but is hardly elegant when
you consider that a rule set for
instance Maintenance Fee may
have upwards of 70 billing rules to
evaluate.

• This model also shows that we are
repeating the same process model
for each rule. So we could improve
on the model by iterating over a set
of rules that belong to the rule set
and performing the condition
evaluation process to consider
raising a billing charge.

Design Theory – Rules Modeling

• So if we improve upon the previous model we would be inclined to loop through
the applicable rules and then conditionally raise a billing charge like so :-

• The list of rules that we iterate through will be part of the configuration for the
billing rule type.

Design Theory – Rules Modeling

• So now that we have improved on the basic design we need to concentrate on the
conditional evaluation for each rule which we concluded we could improve upon
by breaking the condition evaluation into smaller units of work. One for each
conditional evaluation.

Design Theory – Rules Modeling

• By breaking down the billing rule
conditional evaluations into individual
rules we have now created a structure
whereby we can easily add and remove
conditions.

• In addition to gaining enhanced
maintainability the design also represents
a low risk for adding further conditions
(more columns to a rules spreadsheet) as
each conditional evaluation is sandboxed
inside its own rule.

• New rules can be added by adding new
configurations for the billing rule category.

Design Theory – Rules Modeling

• The next issue to model is how we can perform conditional evaluations against
enumerations in a CONFIGURABLE manner.

• We definitely don’t want to be writing n number of rules that repeat the same
Conditional logic for slightly different data sets.

• Looking at the disease conditions for applying this billing charge what the
requirement is imparting is that we should not be raising a billing charge for patient
occurrences where the disease is Tuberculosis, STD, leprosy….etc.

• By this we should be raising this billing charge for all other diseases.

Design Theory – Rules Modeling

• So there are a set of diseases that fall within the conditions of raising the charge and
a set for which we don’t want to raise the charge.

• But we don’t want to create a rule that will test the patients disease against all the
exemptions and then all the chargeable diseases. Because the list of chargeable
diseases includes all diseases.

• So a better way to create a rule of this kind would be to simplify the condition such
that we test against all the excluded diseases and if the patients disease is NOT one
of these then we continue to raise the charge.

Design Theory – Rules Modeling

• So we would need to write a rule that tests against an exempt set of diseases.

• But this set of diseases is not the same for every rule, other rules imply that a charge
should only be raised for Tuberculosis, STD, leprosy.

• So this implies that the disease rule can’t just raise charges based on an exempt set
of diseases but in some cases has to raise charges based on the set of chargeable
diseases.

Design Theory – Rules Modeling

• So creating a configurable rule is going to require the definition of a simple
configuration meta language e.g.

Rule# Disease Included or Excluded for
chargeable set

2 Tuberculosis Excluded/Exempt

2 STD Excluded/Exempt

2 Leprosy Excluded/Exempt

2 Plague Excluded/Exempt

2 All Others Included/Chargeable

Rule# Disease Included or Excluded for
chargeable set

10 Tuberculosis Included/Chargeable

10 Leprosy Included/Chargeable

10 STD Included/Chargeable

10 All Others Included/Chargeable

Rule# Disease Included or Excluded for
chargeable set

2 Tuberculosis Excluded/Exempt

2 STD Excluded/Exempt

2 Leprosy Excluded/Exempt

2 Plague Excluded/Exempt

2 All Others Included

Design Theory – Rules Modeling

• So how will the rule know whether to check for exempt diseases or chargeable
diseases ? The answer is it won’t because for each rule in a set we may have to do
one or both operations so the rule logic will have to follow a pattern of
determination in order to reach a correct outcome.

• So the rule will have to check if a disease has been explicitly included or excluded in
the configuration. If the disease is not explicitly configured then the rule will have to
check if there is a directive for all NON EXPLICITLY configured diseases to check if all
others are CHARGEABLE or EXEMPT.

Design Theory – Rules Modeling

• Many of the billing rule conditions imply the same conditional logic throughout the
requirement as shown by these Maintenance Fee Rules:-

• So this configurable approach can be used where SET type evaluations are required.

Design Theory – Rules Modeling

• So if we have a look at our model of a typical billing rule set it will look a little like
this :-

• Each billing rules set will have a configuration
for the list of rules that are applicable to that
set.

• Individual configurations will be present for
rule condition evaluations.

• Splitting the individual configurations up
allows the configurations to be kept to a
manageable size.

• Each condition’s configurations are sandboxed
into a single entity which allows a smaller
targeted unit of work to be undertaken to
change a configuration.

Design Theory – Rules Modeling

• So each rules set will have its own set of configuration assets e.g.

• Configurations will reside in tables.

• Each table will be editable

• Adding a new rule to a billing rules set will involve adding the required configurations
and adding the rule id/number to the list of rules that are run for the billing rule set.

Rules Implementation

• To understand how the rules architecture is implemented its important to equate the
items on the model to concepts in Idiom.

• So we can equate billing rule categories or sets of billing rules to decision models. A
decision model will contain all the conditional evaluation rules required to raise the
relevant charges.

Rules Implementation

• Within each decision model will be sets of decision groups to iterate through the
rules or group sets of conditional evaluations together.

• Conditional evaluations will be performed by decisions and the grouping/layout of
the decision groups and decisions with the decision model will determine the
workflow of decisioning.

Rules Implementation

• Configuration for set type evaluations which reside inside of tables will use the meta
language that we defined in the model.

